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Abstract: We study 2D Maxwell-dilaton gravity on AdS2. We distinguish two distinctive

cases depending on whether the AdS2 solution can be lifted to an AdS3 geometry. In both

cases, in order to get a consistent boundary condition we need to work with a twisted

energy momentum tensor which has non-zero central charge. With this central charge and

the explicit form of the twisted Virasoro generators we compute the entropy of the system

using the Cardy formula. The entropy is found to be the same as that obtained from

gravity calculations for a specific value of the level of the U(1) current. The agreement is

an indication of AdS2/CFT1 correspondence.
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1. Introduction

In 3D gravity the group of diffeomorphisms which preserves the condition that the metric

be asymptotically AdS3 is two copies of the Virasoro algebra with the central charge [1]

c =
3l3
2G3

, (1.1)

where l3 is the AdS3 radius and G3 is the three dimensional Newton’s constant.

This fact has been used to compute the entropy of three dimensional black holes. It

has been shown [2] that one may use the Cardy formula with the above central charge and

count the boundary degrees of freedom which agrees with the entropy of the black hole in

the bulk. Therefore the symmetry is enough to find the entropy without knowing about

the details of the dynamics.

Of course we now understand the reason behind this precise agreement and it is due to

the AdS/CFT correspondence [3]. In three dimensions the lesson we have learned from the

AdS/CFT correspondence is that “any consistent quantum gravity on an asymptotically

AdS3 spacetime is a 2D CFT living on the boundary of the AdS3”.

Although AdSd+1/CFTd have been understood for d ≥ 2 mainly due to explicit ex-

amples, little has been known for the case of d = 1 (see however [4 – 9]). The lack of our

knowledge of the holographic dual of AdS2 is due to the special features of AdS2 spacetime.

First of all it has two boundaries. Secondly, so far we do not have a concrete example of an

AdS2/CFT1 in the context of string theory where we could identify both sides of the duality.

On the other hand the quantum gravity on AdS2 geometry is important on its own

right. Indeed the AdS2 geometry is the factor which appears in the near horizon geometry of

the extremal black holes in any dimension. Therefore understanding gravity on AdS2 might

ultimately help us understand the origin of the black hole entropy in other dimensions.
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To explore the AdS2/CFT1 correspondence one may utilize the experience of the AdS3

case; namely, one could try to understand the asymptotic symmetry of AdS2. In fact this

has been done in several papers including [4 – 7]. In particular it has been shown [4] that

the asymptotic symmetry group of an asymptotically AdS2 geometry is one copy of the

Virasoro algebra. Recently it has also been shown [10] that exactly the same argument

as that for AdS3 [1] can be made for quantum gravity with a U(1) gauge field on AdS2

leading to the following central charge1

c = 12kG2Q2l4, (1.2)

where l is the radius of AdS2, Q is the electric charge, k is the level of the current which

generates the U(1) and G is the two dimensional Newton’s constant.

The aim of this article is to further study 2D Maxwell-dilaton gravity on AdS2 back-

ground. In particular we would like to study the entropy of the corresponding solution and

to see to what extent the information of the theory is encoded in a CFT whose central

charge is given by (1.2). Our strategy is the 2D analog of [2]. Namely we will reproduce

the black hole entropy obtained from gravity by making use of the Cardy formula with

the central charge given by the asymptotic conformal diffeomorphism of the 2D theory.

As observed in [10] in order to have a consistent boundary condition for gravity on AdS2

coupled to gauge field, the energy momentum tensor has to be twisted. Having a non-

zero central charge plus the fact that we can consistently reproduce the entropy from this

central charge provides an indication of the AdS2/CFT1 correspondence showing that the

corresponding holographic dual would be a chiral half of a 2D CFT (see also [10, 11]).

In the course of studying 2D Maxwell-dilaton gravity on AdS2 we will encounter two

distinctive cases depending on whether the corresponding AdS2 solution can be lifted up

into AdS3 solution. These two models are given by the actions

S1 =
1

8G

∫

d2x
√
−g

(

eφ

(

R +
8

l2

)

− l2

4
F 2

)

,

S2 =
1

8G

∫

d2x
√
−g eφ

(

R +
2

l2
− l2

4
e2φF 2

)

. (1.3)

Both actions admit an AdS2 vacuum solution. We note, however, that although in the

second case the AdS2 solution can be lifted up to three dimensional AdS3 solution, in the

first one it cannot. Our main conclusion is that for both cases we can reproduce the black

hole entropy using the central charge of the twisted energy momentum tensor. Moreover

we can show that in the first case approaching the horizon a CFT emerges which has the

same central charge as that obtained by using the asymptotic symmetry. Therefore in this

case there may be a correspondence between the two CFT’s; one at infinity and the other

at the horizon.

The paper is organized as follows. In section two we will study 2D Maxwell-dilaton

gravity on AdS2 based on the first action in (1.3). We will show that the central charge

of the twisted energy momentum can be used to compute the entropy using the Cardy

1In order to compare the result with that in [10] one needs to use a unit in which G = 1

4
.
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formula. The entropy is the same as the black hole entropy obtained from the gravity side

for a specific value of k. Therefore the consistency of the results leads us to fix the level

of U(1) current too. We will also study the model in terms of the near horizon modes

where we show that at near horizon we get a CFT whose central charge is the same at

that obtained from asymptotic symmetry. In section three we will do similar computations

for the model based on the second action in (1.3). We will see that using the asymptotic

symmetry one can read off the central charge of the twisted energy momentum tensor which

can then be used to reproduce the black hole entropy correctly. The last section is devoted

to the conclusions and discussions.

2. Type I 2D gravity

2.1 Central charge and entropy

In this section we study the 2D Maxwell-dilaton gravity based on the action

S1 =
1

8G

∫

d2x
√
−g

(

eφ

(

R +
8

l2

)

− l2

4
F 2

)

. (2.1)

This model has recently been considered in [10] where the central charge of the CFT associ-

ated with the asymptotic symmetry of its AdS2 solution was calculated. The authors of [10]

noticed that the potential of the U(1) gauge field is singular at the boundary and therefore

the boundary condition is not respected under a conformal diffeomorphism. The resolution

was to accompany the conformal transformation with a special U(1) gauge transformation,

generated by a current j±, leading to the twisted energy momentum tensor [10]

T̃±± = T±± ± GQl2∂±j±, (2.2)

where T is the energy momentum tensor corresponding to the original conformal transfor-

mation with c = 0.

Since the AdS2 solution carries an entropy, it is natural to pose the question of whether

this entropy can be reproduced using the Cardy formula with central charge given by (1.2).

In other words we should be able to compute the statistical entropy by evaluating the

eigenvalue of L̃0 coming from energy momentum (2.2) and then use the Cardy formula

with the central charge (1.2). The resultant entropy should be compared with the entropy

of the AdS2 solution.

Therefore it is important to first compute the entropy of the model using the gravity

solution which we do utilizing the entropy function formalism [12], which only needs the

information of the near horizon geometry. Since the geometry is AdS2, we start from an

ansatz respecting the SO(2, 1) isometry of the AdS2 solution,

ds2 = v

(

−r2dt2 +
dr2

r2

)

, eφ = η, Frt =
e

l2
, (2.3)

where v, η and e are constant to be determined by the equations of motion.

To proceed we need to evaluate the entropy function,

E = 2π(Qe − f(e, v, η)), (2.4)

– 3 –
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where

f =
v

8G

[

η

(

−2

v
+

8

l2

)

+
e2

2v2l2

]

(2.5)

is the Lagrangian density evaluated for the ansatz. Extremizing the entropy function with

respect to parameters v, η and e we get

ds2 =
l2

4

(

−r2dt2 +
dr2

r2

)

, eφ = 4G2Q2l4, Frt = 2GQl2. (2.6)

The entropy is also given by

SBH = 2πGQ2l4 (2.7)

which can be recast in the suggestive form

SBH = 2π

√

1

6
(12GQ2l4)

(

12GQ2l4

24

)

, (2.8)

reminiscent of the Cardy formula

S = 2π

√

(

c

6
− 4∆0

)(

∆ − c

24

)

, (2.9)

where ∆ is the eigenvalue of L0 and ∆0 its the lowest eigenvalue. With this observation,

the task is to see whether the CFT defined by the twisted energy momentum tensor (2.2)

and central charge (1.2) can in fact reproduce the above entropy.

To proceed we note that the twisted energy momentum tensor (2.2) satisfies the fol-

lowing commutator relation [10]

[T̃−−(t−), T̃−−(s−)] = −4π∂−δ(t− − s−)T̃−−(s−) + 2πδ(t− − s−)∂−T̃−−(s−)

+2πkG2Q2l4∂3
−δ(t− − s−), (2.10)

leading to the central charge of c = 12kG2Q2l4. k is the coefficient of the Schwinger term

in the U(1) current algebra

[j−(t−), j−(s−)] = −2πk∂−δ(t− − s−). (2.11)

These expressions together with the definition of the twisted energy momentum tensor

show that upon mode expanding the energy momentum tensor, the Virasoro generators

become

L̃n = Ln − GQl2Un, (2.12)

which satisfy a Virasoro algebra as follows

[L̃n, L̃m] = (n − m)L̃n+m +
12kG2Q2l4

12
(n3 − n)δn+m,0. (2.13)

Here Un are the coefficients of the mode expansion of ∂−j−.

We now want to evaluate the eigenvalues of L0 and U0. This may be done by using the

semiclassical method in which ∆ is obtained from the integral of the energy momentum
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tensor T evaluated at the AdS solution which turns out to be zero. On the other hand to

find U0 note that the non-zero value of the divergence of the U(1) current, ∂−j−, which

gives an important contribution to the energy momentum tensor, is the anomaly related

to the Schwinger term in (2.11). As it has already been pointed out in [10] the situation is

very similar to the Schwinger model [13] where, using the fermionic formulation, one gets

the central term in the commutator, and the anomaly in the U(1) current, due to the one

loop digram contributions. This observation can be used to evaluate the divergence of the

current. Indeed using the standard anomaly and the Schwinger term calculations one finds

(see for example [14, 15])

∂−j− =
k

4
ǫµνFµν = −kGQl2. (2.14)

So that ∆̃ = kG2Q2l4. Therefore with the assumption ∆̃0 = 0 and using the central charge

c = 12kG2Q2l4 we arrive at

S = 2πGQ2l4 (kG). (2.15)

Comparing the Cardy entropy with the black hole entropy (2.7) one has to set k = 1
G .

Thus to get a consistent result the level of U(1) is not a free parameter. Of course we are

familiar with such a phenomena; namely requiring to get correct black hole entropy may

put a constraint on the level of affine algebra in the dual CFT (for example see [16 – 21]).

So the central charge and ∆̃ of the CFT read

c = 12GQ2l4, ∆̃ = GQ2l4. (2.16)

We would like to identify this central charge as the central charge of a CFT whose global

SL(2, R) symmetry is the isometry of the AdS2 geometry. With the above particular value

of k, the CFT descriptions is consistent with gravity result. This is a strong indication in

favor of the AdS2/CFT1 correspondence.

2.2 Near horizon modes

There is an alternative CFT living in the near horizon region of the black hole describing

its entropy. In this approach one may identify the entropy as the number of states at the

horizon. To do this we follow [22] and make a change of variables in the action S1,

eφ

2G
= Φ2 = qΦ0ϕ, gµν → e

2

qΦ0
ϕ
gµν , (2.17)

where Φ0 is the value of Φ at horizon, Φ2
0 = 2GQ2l4, and q is a free parameter and get

S1 = −
∫

d2x
√

g

(

−1

4
qΦ0ϕR +

1

2
(∇ϕ)2 − 2qΦ0

l2
ϕe

2

qΦ0
ϕ

+
l2

32G
e
−

2

qΦ0
ϕ
F 2

)

. (2.18)

Then integrating out the gauge field, using the Maxwell equations, leads to an effective

potential for the scalar field ϕ

S1 = −
∫

d2x
√

g

(

−1

4
qΦ0ϕR +

1

2
(∇ϕ)2 + V (ϕ)

)

. (2.19)

– 5 –



J
H
E
P
0
8
(
2
0
0
8
)
0
7
9

This is the action considered in [22] where it was shown that in the near horizon limit

(r → 0) the energy momentum tensor of the theory becomes traceless leading to a CFT

with a specific central charge.

To be precise the author of [22] starts from a d-dimensional spherically symmetric

black hole and decomposes the metric into two parts

ds2 = −g(r)dt2 +
dr2

g(r)
+ hij(r)dxidxj . (2.20)

Dimensionally reducing along the xi’s he gets, after some manipulations, the above two

dimensional action.

Although the considerations of [22] are for a non-extremal black hole where the leading

behavior of g in the near horizon limit is g(r) ∼ (r − rh) with rh being the radius of the

horizon, the procedure works for the extremal case as well where g(r) = vr2. The only

difference is that in the non-extremal case the trace of energy momentum tensor vanishes

exponentially when the horizon is approached while in our case the approach is power law.

Using the change of variable z = 1
r (note that in this case horizon is at z → ∞), the

components of the energy momentum tensor of the action (2.19) read

T00 =
1

4
((∂tϕ)2 + (∂zϕ)2) − qΦ0

4
(∂2

zϕ − v

2z
∂zφ) +

v

z2
V (ϕ),

Tzz =
1

4
((∂tϕ)2 + (∂zϕ)2) +

qΦ0

4

(

− ∂2
t ϕ +

v

2z
∂zφ

)

− v

z2
V (ϕ),

T0z =
1

2
∂t∂zφ − qΦ0

4

(

∂z∂tϕ − v

2z
∂tϕ

)

. (2.21)

Using the light-cone coordinates z± = t ± z the non-zero components of the energy mo-

mentum tensor are given by

T±± = (∂±ϕ)2 ∓ 1

2
qΦ0∂

2
±ϕ, (2.22)

which has the same structure as (2.2). Essentially it has the form of a scalar field in the

presence of a non-zero background charge. If we define the Virasoro algebra as the Fourier

coefficients in the expansion of the above energy momentum tensor,

Ln =
L

2π

∫ L/2

−L/2
dz e2πinz/LT++, (2.23)

then it is easy to see that the shifted Virasoro generators

L̃n = Ln +
c

24
δn,0, (2.24)

satisfy a Virasoro algebra with central charge c = 3πq2Φ2
0 [23]. Here we compactified z

coordinate on a circle of circumference L. Finally we would like to send L to infinity.

The aim is to evaluate L0 for our background. It is, however, tricky as the scalar field is

constant and naively leads to zero L0. Nevertheless note that in the vicinity of the horizon

the equations of motion allow a more general zero mode configuration ϕ = 2Φ0/qL z; in

– 6 –
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our notation the horizon is at z = L/2. Plugging this expression in the definition of the

energy momentum tensor and using the definition of Ln, (2.23), one arrives at

c = 6πq2GQ2l4, ∆̃ − c

24
=

GQ2l4

πq2
. (2.25)

For q2 = 2
π these are exactly the same results we obtained using the asymptotic symmetry

of the model.

Observe that the effect of the U(1) gauge transformation at asymptotic boundary

condition reflects, upon integrating out the gauge field, a non-zero background charge in

the near horizon limit description of the theory. Therefore in this case twisting at infinity

has the same effect as having a non-zero background charge at the horizon. We conclude

that there may be a one to one correspondence between these two CFT’s, one at infinity

and the other at the horizon (for discussions on these two CFT’s see for example [24]).

3. Type II 2D gravity

In this section we consider 2D Maxwell-dilaton gravity based on the following action

S2 =
1

8G

∫

d2x
√
−g eφ

(

R +
2

l2
− l2

4
e2φF 2

)

, (3.1)

which can actually be obtained from the 3D pure gravity with cosmological constant by

reducing to two dimensions along an S1. This action has been used to study entropy of

extremal black hole in the presence of higher order corrections (see for example [25]).

We will redo our previous section’s computations for the action (3.1). To start with

note that this action also has an AdS2 solution. Following our discussion in the previous

section we start with the following ansatz

ds2 = v

(

−r2dt2 +
dr2

r2

)

, eφ = η, Frt =
e

l2
, (3.2)

where v, η and e are constants to be determined by the equations of motion and use the

entropy function formalism to find

ds2 =
l2

4

(

− r2dt2 +
dr2

r2

)

, eφ =
√

4GQl2, Ftr =

√

1

16GQl2
(3.3)

with the entropy,

SBH = 2π

√

Ql2

4G
. (3.4)

Following our discussions in the previous section the goal is to reproduce this entropy using

the number of states of a CFT which can be defined by asymptotic symmetry of the AdS2

solution.

Note that the above solution, unlike the solution in the previous section, has the

underlying symmetry of AdS3. In other words one may lift the two dimensional solution

to three dimensions as follows

ds2
(3) = ds2

(2) + l2e2φ(dz + Aµdxµ)2, (3.5)

– 7 –
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which for our solution, defining y =
√

16GQl2z, becomes

ds2
(3) =

l2

4

(

dy2 + 2r2dydt +
dr2

r2

)

, (3.6)

clearly the AdS3 written in the S1 fibered over AdS2 coordinates. So we get the AdS3 with

an identification and the solutions is lifted to the extremal BTZ black hole.

Taking into account the isometry of AdS3 which is SL(2, R)R × SL(2, R)L, our two

dimensional solution can be thought of as an SL(2, R)L quotient of AdS3 [26]. Therefore

we are left with just the SL(2, R)R symmetry of AdS3 which under the reduction reduces

to the SL(2, R) isometry of AdS2 plus a gauge transformation [4]. Following the arguments

of [10] one can see that the conformal diffeomorphism in two dimensions will not respect the

boundary conditions of the gauge field, necessitating an extra U(1) gauge transformation

leading to a twisted energy momentum tensor [4]

T̃±± = T±± ± ∂±j±, (3.7)

where j± is the appropriately normalized current associated with the Kaluza-Klein U(1)

gauge symmetry, and T is the AdS2 energy momentum tensor with zero central charge.

The central charge of the twisted quantum theory crucially depends on the correct

normalization of the U(1) current. In our case there is a short cut in calculating the

central charge. The Virasoro generators L̃n corresponding to the twisted energy momentum

tensor T̃ , are equal to the right handed modes L
(3)
n of the energy momentum tensor of AdS3

corresponding to its SL(2, R)R isometry, L
(3)
n = L̃n [4]. As

[L(3)
n , L(3)

m ] = (n − m)L
(3)
n+m +

c(3)

12
(n3 − n)δn+m,0, (3.8)

with c(3) = 3l/2G3, we get

[L̃n, L̃m] = (n − m)L̃n+m +
1

12

(

3

2G

)

(n3 − n)δn+m,0, (3.9)

where G3 = lG. This gives the central charge of the twisted energy momentum tensor,

c =
3

2G
. (3.10)

The entropy can now be computed from the Cardy formula following the procedure of the

section two and turns out to be consistent with the gravity computations for k = 1
4G where

∆̃ = Ql2. This again is a direct indication in favor of AdS2/CFT1 correspondence.

4. Conclusions and discussions

In this paper we have studied 2D Maxwell-dilaton gravity on AdS2 geometry. We have

seen that there are two distinctive models of 2D Maxwell-dilaton gravity defined by actions

S1 and S2 in (1.3).
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Both actions admit an AdS2 vacuum solution. In both cases to maintain the consis-

tent boundary conditions of the fields in the theory the conformal diffeomorphism in the

boundary at infinity has to be accompanied by a special U(1) gauge transformation. The

theories are well-described by the twisted energy momentum tensor defined by

T̃±± = T±± ± A∂±j±, (4.1)

where A is a constant depending on the normalization of the U(1) current j±. Although

the Virasoro algebra of T has zero central charge, as expected from 2D quantum gravity,

the twisted energy momentum tensor leads, after fixing the constant A correctly, to the

non-zero central charge given by

c = 12GQ2l4, c =
3

2G
(4.2)

for the models based on S1 and S2, respectively; which can then be used in the Cardy for-

mula to compute the number of states of the CFT. It was then observed that the resultant

entropy is equal to the entropy of the AdS2 solution obtained from gravity calculations.

This precise agreement can be thought of as a strong indication of AdS2/CFT1 correspon-

dence. In particular it might be a sign that the holographic dual of gravity on AdS2 is a

chiral half 2D CFT. In fact one may go further and claim that any consistent 2D quantum

gravity on an AdS2 is dual to a chiral half 2D CFT generalizing the situation of AdS3.

Although these models show certain similarities, they have significant differences. For

example the central charge of the first model depends on the detail of the solution consid-

ered, while in the second case it only depends on the two dimensional Newton’s constant.

In the first model even though we have a gauge field, the solution can not be lifted to

an AdS3 geometry. In fact there are indications that the model may be obtained from

a higher dimensional extremal black hole. Actually following [22] we started from a four

dimensional extremal black hole with near horizon geometry AdS2×M2 and reducing along

the M2 manifold we found an effective Maxwell-dilaton gravity on AdS2. In this approach

the entropy is associated with the near horizon modes where a new CFT emerges. We have

seen that the emergent CFT has the same central charge as that obtained using asymptotic

symmetry. Moreover we have observed that the energy momentum tensor has the form of

a twisted energy momentum tenor where the extra twist term can be interpreted as a non-

zero background field (or Liouville theory). Indeed as far as the energy momentum tensor,

central charge and entropy are concerned there is a correspondence between the two CFT’s;

one at infinity and the other at the horizon. This observation requires further study.

On the other hand the AdS2 solution of the second case was lifted to an AdS3 solution,

exhibiting a direct connection between the two and three dimensional theories. In particular

we were able to relate the central charge of the twisted energy momentum tensor to the

Brown and Henneaux-like central charge.

It is tempting to ask whether this connection can lead to an understanding of certain

aspects of one theory form the other. In particular it has been recently observed that

by adding a Chern-Simons term to the three dimensional gravity, a chiral gravity is ob-

tained [27]. It is then interesting to study the resultant chiral gravity in the 2D theory.
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Actually a two dimensional Chern-Simons term can be added to our theory. In our notation

the Chern-Simons action is given by [28, 29]

Scs =
1

32Gµ

∫

d2x e2φ
(

lRǫµνFµν + l3e2φǫµνFµρF
ρδFδν

)

. (4.3)

It is easy to show that a model based on S2 + Scs still has an AdS2 solution. The cor-

responding central charge can be computed and is seen to get corrected. The correction

of the central charge depends on the sign of the electric field e. Using entropy function

formalism, we get

c =
3

2G

(

1 − 1

lµ

)

, for e > 0

c =
3

2G

(

1 +
1

lµ

)

, for e < 0. (4.4)

A chiral gravity in two dimensions, may be also defined in the same way as in three

dimensions. We note, however, that a priori there is no reason from the two dimensional

point of view to force the relation µl = 1. Nevertheless since the theory is related to the

three dimensional theory, one would expect to find some tachyonic modes leading to a

particular value for µ. Work on this question is in progress.
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